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Mechanics with fractional derivatives
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Lagrangian and Hamiltonian mechanics can be formulated to include derivatives of fractiona[Frder
Riewe, Phys. Rev53, 1890 (1996]. Lagrangians with fractional derivatives lead directly to equations of
motion with nonconservative classical forces such as friction. The present work continues the development of
fractional-derivative mechanics by deriving a modified Hamilton’s principle, introducing two types of canoni-
cal transformations, and deriving the Hamilton-Jacobi equation using generalized mechanics with fractional
and higher-order derivatives. The method is illustrated with a frictional force proportional to velocity. In
contrast to conventional mechanics with integer-order derivatives, quantization of a fractional-derivative
Hamiltonian cannot generally be achieved by the traditional replacement of momenta with coordinate deriva-
tives. Instead, a quantum-mechanical wave equation is proposed that follows from the Hamilton-Jacobi equa-
tion by application of the correspondence princi81063-651X97)01403-7

PACS numbeg(s): 03.20:+i, 46.10+2z, 46.30.Pa, 03.65.5Sq

I. INTRODUCTION negative friction. The Lagrangian for the combined system is

In 1931, Bauel1] proved that it is impossible to use a L=mxy+ 3 y(Xy—Xxy), 1)
variational principle to derive a single linear dissipative
equation of motion with constant coefficients. Bauer’s theoWhich leads to two equations of motion
rem expresses the well-known belief that there is no direct ] )
method of applying variational principles to nonconservative mx+ yx=0, my—yy=0. 2
systems, which are characterized by friction or other dissipa-
tive processes. As stated by Lanci@$ “Forces of a fric-  Here, dots indicate time derivatives. Even though the first
tional nature ... are outside the realm of variational prin-equation describes a frictional force, the corresponding
ciples, while the Newtonian scheme has no difficulty inHamiltonian leads to extraneous solutions that must be sup-
including them.” The techniques of Lagrangian and Hamil-pressed and the physical meaning of the momenta is unclear.
tonian mechanics, which are derived from variational prin-The method is also described by Morse and Feshiadh
ciples, thus appears to be out of reach. and has been used in several applicatidiis15).

The proof of Bauer's theorem, however, relies on the tacit Dekker [16] has added a clever twist to the auxiliary-
assumption that all derivatives are of integer order. If a Lacoordinate method. He considers a Lagrangian which pro-
grangian is constructed using noninteger-order derivativeg/ides two first-order equations that are complex conjugates
then the resulting equation of motion can be nonconservativef each other, so that there is no nonphysical auxiliary equa-
[3]. Because most classical processes observed in the phyéion. The equations can be combined to form a real, second-
cal world are nonconservative, it is important to be able toorder equation of motion. Dekker’s rep¢ft6] also provides
apply the power of variational methods to such cases. Nond comprehensive review of work related to dissipation in
conservative quantum processes are common too, since thdr@grangian and Hamiltonian mechanics.
is dissipation in every nonequilibrium or fluctuating process, Bateman’s second method uses a Lagrangian that leads to
including tunneling[4], electromagnetic cavity radiation an Euler-Lagrange equation that is, in some sense, equivalent
[5,6], masers and parametric amplificati¢@], Brownian to the desired equation of motion. For example, the time-
motion [7,8], inelastic scattering9,10], squeezed states of dependent Lagrangian
guantum optic$11], and electrical resistance or Ohmic fric- _
tion [12]. Since the starting point for the quantum- L=3mx2elYmt ©)
mechanical treatment of a phenomenon is usually the Hamil-
tonian or a related function, variational principles areleads to the Euler-Lagrange equation
important here too. .

Besides the use of fractional derivatives, a number of "M mx+ yx)=0. 4
other methods have been proposed that take advantage of
loopholes in Bauer'gl] theorem. Batemahl3] suggested The desired equation of motion is obtained if the factor
two methods based on the idea that a Lagrangian could leagl”™* is ignored. However, the corresponding momentum
to multiple equations. His first technique introduces an auxand Hamiltonian do not appear to be physically meaningful.
iliary coordinatey that describes a reverse-time system withAlso, Ray[17] has shown that the Lagrangian should be

interpreted as describing a system with increasing mass,
rather than one with dissipation. Other work using this
*Electronic address: fredr@fl.ensco.com method can be found in Refg6,8,18.
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An approach that applies only to quantum systems is to Derivatives of any noninteger order are usually termed
modify the Schrdinger equation directly8,10,19. For ex-  “fractional derivatives.” Since the mathematical techniques
ample, a nonlinear term proportional to W {*) can be for dealing with derivatives of noninteger order are relatively
added, sometimes accompanied by a second term to ensuwrafamiliar, fractional calculus is reviewed in Sec. Il. The
conservation of energy. These types of modifications providenethods of Lagrangian mechanics with fractional derivatives
guantum results corresponding to classical friction, althouglirom Ref.[3] are reviewed in Sec. Ill. Section IV provides a
many appear to have other unsatisfactory or peculiar featureterivation of Hamilton’s equations using a modified Hamil-
[10]. This method does not correspond to any classical techton’s principle. Mechanics with fractional derivatives is ex-
nique for including friction in Lagrangian and Hamiltonian tended to included canonical transformations in Sec. V and
mechanics. Hamilton-Jacobi theory in Sec. VI. In Sec. VIl the methods

A standard device for dealing with dissipation is the Ray-are illustrated using the example of a classical frictional
leigh dissipation functiofRef. [20], pp. 21 and 2R which  force proportional to velocity. An appropriate quantization
can be used when frictional forces are proportional to velocprocedure is then presented in Sec. VIII. In Sec. IX fractional
ity. For a particle in one dimension, Rayleigh’s function is mechanics is used to solve a puzzle first published in 1931.

_ Conclusions are presented in Sec. X.
F=3yx° (5)
Il. FRACTIONAL CALCULUS

and Lagrange’s equation must be rewritten in the form _
A review of fractional calculus was presented in H&f,

d oL oL oF as was a brief history of the subject. Additional details can be
G e o Fo=0 (6)  found in textbookg22,23 and a recent review articl4].
X X This section provides a summary of the needed mathematics.

In this case, it takes two scalar functions to specify the equa- The fractional integral of order is defined by

tion of motion. The momentum and the Hamiltonian are the d=vf(t) 1 [t
same as if no friction were present, so they are of no use d(t—c)*V:F(v)J' (t—t")" Y (t")dt’
when attempting to add friction to Hamiltonian mechanics or ¢
guantum theory.

The most realistic approach is to include the microscopic
details of the dissipation directly in the Lagrangian or Hamil- | 1, is the smallest integer greater than Re),( and

tonian[4,5,7,9,12,2). For example, if the dissipation is due ,_ , _\, then the fractional derivative of orderis defined
to the interaction with a bath of harmonic oscillators with by

coordinatey;, the following Lagrangian can be used:

Cj 2
= ——X]| |
i mye?

[ Re(v)>0]. 8

dUf(t)  d" d (D)
d(t—c)V dt"d(t—c) "

(€)

1. 1 .
L:mez—V(x)Jr; Emj[yf—wf

(7) For integer values ofi, the definition reduces to the usual
. . _ ) o _ definition of derivative.
This method is well suited to a wide range of realistic appli-  The above notation, which will be used throughout the
cations that can be modeled with harmonic oscillators. Howpaper, follows Oldham and Spanig22]. Another common

ever, it is not intended to be a general method for introducingyotation was introduced by Davig5] and is used by Miller
friction into classical Lagrangian mechanics. It can be comand Rosg23]:

plex in practice and does not allow the functional form of the
frictional force to be chosen arbitrarily. " duf(t)

The techniques described above are not as simple and oD f( ):m- (10
direct as conservative mechanics. To put the mechanics of
nonconservative systems on the same footing as the consex-definition, especially useful wher< ¢, is the Weyl deriva-
vative, a method was presented in R&f], and is extended tive
in the present paper, that allows nonconservative forces to be
calculated directly from a Lagrangian. Hamilton’s equations " _y dU)
are derived from the Lagrangian and are equivalent to the Wif(D=(=1) d(t—c)Y
Euler-Lagrange equation. The method is suggested by the
observation that a term proportional to thth-order deriva- Use of the Weyl derivative would simplify certain formulas
tive d"x/dt" in the Euler-Lagrange equation follows from a in this paper by eliminating the sometimes ambiguous factor
Lagrangian with a term proportional td7?x/dt"?)2. Hence  (— 1)~ Y. However, the notation is less physically meaning-
a frictional force of the formy(dx/dt) might follow directly ~ ful, since the Weyl derivative reduces to the negative of the
from a Lagrangian containing a term with the half-order de-ordinary derivative wheru is an odd integer. All of the
rivative (dY?/dt¥?)2. It was shown in Ref[3] that such above notations emphasize that the fractional derivative of a
fractional derivatives in the Lagrangian do indeed describdunction is not determined by the behavior of the function at
nonconservative forces. This technique overcomes many dhe single valug, but depends on the values of the function
the objections raised for the other methods, but its price i®ver the entire intervat to t, just as a definite integral de-
the complexity and unfamiliarity of fractional calculus. pends on values throughout the interval of integration.

1D
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It is illuminating to consider the special case0. Then ll. GENERALIZED MECHANICS
the expression for the derivative of a powett dfas the same WITH FRACTIONAL DERIVATIVES

form as for integer-order derivatives: This section provides background and notation. It also

dit” Il reviews the results of Ref3], which introduced the gener-
—_— = _"tV*U_ (12 alization of mechanics to include derivatives of noninteger
et (v—u! order. Section IV begins the presentation of material leading

. . to Hamilton-Jacobi theory and a corresponding quantum-
The factorialsy! and (v—u)! must now be interpreted as the ,achanical wave equation.

gamma function$’(v+ 1) andl'(v—u+1). Another special
case isc= —, for which A. Background
duedt uoat In traditional Newtonian mechanics, equations of motion
—d(t+oo)” =a-e”, (13 normally have derivatives of first or second order only. The
corresponding Lagrangians have derivatives of only first or-
which is the same as the expression for integer-order derivaler- Ostrogradsky27] published a generalization of La-
tives. Equationg12) and (13) can be used to calculate the 9rangian and Hamiltonian mechanics to include derivatives

fractional derivatives of any functions that can be expresse@f arbitrarily high(integej order. Such dynamical equations
as sums of powers or exponentials. with higher-order derivatives can be used to describe par-

In this paper integer-order derivatives with respect to ticles with internal structure, such as spin or internal motion
mav be denoted with dots. so that=dx/dt and [28]. The formalism was extended to quantum electrodynam-
.._yz 9 o ) . ics by Bopp[29] and Podolsky{30] and to quantum field
)a(\r_edsc))(:r?etti.m[;irIi\rlw?jtilt\:/aetségfbirgltsrm{sgrrigfr()\rlvggpreer?sgﬁgitiﬁ D qtgeory by Greeri31]. Generalized mechanics is reviewed in
renthesesx(u,a)=x(“'a)=d“x/d(t—a)“. The constant may ef. [32] and recent applications are described in Refs.

be omitted if it is zero or if its value is clear from the context [33,34. The present work and ReB] can be considered to
. o : " be a further generalization of mechanics to include noninte-
A formula we will need is integration by parts of a frac-

. N . : er derivatives of all orders.
tional derivative. The conventional formula for mteger-orderg
derivatives is

B. Notation
bd"f(t) d Ch bf d"g(t) q The Lagrangian for generalized mechanics is a function of
. dt” g(Hdt=(=1) a () dt" t coordinates«,, the time parametet, and derivatives ok,

with respect tot. The subscriptr=1, ... R indicates the
b particular coordinatgfor example,x;=X, X,=Yy, X3=2).

(14)  The order of derivatives can be any non-negative real order,
although in principle there is no reason to exclude more gen-
eral derivatives, such as complex order. If the Lagrangian is

Love and Young26] have obtained a fractional-order for- a function of the coordinate, andN different derivatives of

n-1 Ck—
d" k() dfg(t)
_ 1k
—go( 1) T S S

mula X, then we will uses(n) to indicate the order of thath
derivative, wheren=1, ... N. For example, if the lowest-
b d™"f(t) B , d~"g(t) order derivative isd¥*/d(t—b)'? , thens(1)=3. In Ref.
ad(t—a)” »9(Ddt=(-1) L f(t) d(t— b)*vd [3] it was found that if the fractional calculus of variations is

(15) applied over the time intervaka to b, then the Lagrangian
can contain two types of derivatives:
for 0O<v<1. To obtain a general formula for integration by

parts for orderu, we choosen to be the smallest integer q —q b= d¥mx, (18)
greater thani, and letv=n—u. Then application of Eq:14) rsm RS D T g (t— ) S
followed by Eq.(15) yields the general formula and
bd"f (t) b d'g(t) ,
——g(tdt— —1’“fft—dt ds (Mx
fa dty g() ( ) a () dtv qr's/(n)’a: —r,, (19)
dit—a)®"”

dnfkflf(t) dkg(t) b

n-1
_ 1k
go (-1 T gi

(16)  wheres(n) ands’(n) can be any non-negative real numbers
a (or complex numbers with Re(n)]=0). We defines(0) to
be 0, so that, ) denotes the coordinate . The subscript
r may sometimes be omitted. For some applications, it may
be more convenient to streamline the notation by writing

" u Or.n Or to number all coordinates consecutivedy.

b df(V) (H)dt=(— 1)‘”fbf(t) d"g(v) dt As in Ref.[3], we will simplify the derivations by using a
ad(t—a)t 9 a d(t—b)* ™~ Lagrangian that does not contain any derivatives with respect
(17) tot—a. The straightforward extension of each final result to

Whendf/dt“=0 or d“g/dt“=0 for k=0 to n—1, this be-
comes the result we will use,
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Lagrangians with both types of derivatives will then be pro- As in Ref.[3], define the momenta
vided. In derivations that use only coordinates defined by Eq.
(18), the subscripb on the coordinates will be omitted.

The notationL ({q, n)},t) will be used to indicate that
the Lagrangian is a function of the parametand the set of N-n—1
all g, g for r=1,... R andn=0,... N. The notation -
L({dr,s'(n),a+9r,s(n) b)-t) designates a Lagrangian that is a k=
function of both types of coordinates. Because summations
overr will always be over all values, we will use the usual
convention of summing over repeated indices. However, we
will not be able to use the summation conventionrian all

Pr.s(n)=Pr,s(n),b

(_ 1)s(k+n+1)fs(n+l)
0

ds(k+n+1)fs(n+1)

X d(t— a)s(k+n+1)fs(n+l)

cases, so all summations ovewill be indicated explicitly. L, (22)
aqhs(k+n+l)
C. Euler-Lagrange equation i i i
. . _ wheren=0, ... N—1. It is also possible to define the mo-
The Euler-Lagrange equation was derived two different,opiq recursively by
ways in Ref.[3]. The first was a generalization of Euler’s
original (integer-order method based on finite differences
. ) aL
and the second followed the same pattern as in conventional PrsiN-1)=T—— (23)
classical mechanic&Ref. [20], Chap. 2 by developing and ' 9qr,s(N)
applying fractional calculus of variations. The use of calcu-
lus of variations avoids ambiguities of Euler's method, suchand
as exchanging the order of limits and summation. The end
points of the integration interval are chosen to be fixed, so S 1) dstk+1)—s(k)
that we can exchange the order of integration and differen- ~ Prsk-1=(—1) d(t—a) < D s® Pr,s(k)
tiation. The path is varied, but not the time, so we can ex-
change the order of differentiation. aL (k=1 N—1) (24)
i i + =1,...N=1).
By varying the integral 9 510
b The Hamiltonian is
J= fa L({qr,s’(n),aaqr,s(n),b}at)dt: (20) N
and using fractional integration by parts, H4.7), it was H=n§l Ar,s)Prstn-1)~ L (25
shown in Ref.[3] that we obtain the Euler-Lagrange equa-
tion where the summation convention implies summation over
N s(n) r.
S (—1)sm d gL The variational principle
n=0 d(x_a)s(n) &qr,s(n),b
b
NEI o ds’(n) JL o0J(a)= 5Ja L({q,vs(n)(t,a')},t)dtZO (26)
+ —-1)~sn ; =0. (21
n=1 ( d(x—b)s' ™ dqr s'(n),a

can be rewritten in terms of the Hamiltonian as
D. Hamilton’s equations

b N
In Ref.[3], Hamilton’s equations were derived using the Sl(a)= 5f ( > GrsmPrsn-n—H|dt=0. (27
Euler-lagrange equation. An alternative method of obtaining a\n=1

the same result uses a variational principle. The derivation

will be presented in Sec. IV. Then

IV. MODIFIED HAMILTON'’S PRINCIPLE ol
0=946l(a)=—da

The modified Hamilton’s principle is a variational prin- da
ciple that yields Hamilton’s equations. It is the launching pN—1 o p
point for canonical transformations and Hamilton-Jacobi =da| > (Mpr om0 s(n“)ﬂ
theory. The derivation here with fractional derivatives fol- an=0 da ’ ’ da

lows the conventional method given by Goldstéwef.[20],

p. 225. Using the procedure described in Sec. Il B, we will —
initially assume that. contains only coordinategy ny p @s dqrsiny da  dIPrgmn) da
defined in Eq.(18) and the results will then be extended to

also include coordinates; ¢ (n),o from Eq.(19). In terms ofq, ), rather thang, 1), this becomes

oH aqr,s(n) _ oH &pr,s(n)

dt. (28
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al
0= 5|(a)=£da

dS(rHl)iS(n) aqu(n) ds(n+l)7s(n)(1r,s(n) apr,s(n) oH &qr,s(n)_ dH apr,s(n)

N—1
b
e & (p"5<“’d(t—b)5<”+l>5<“> da ' d(t—bym DM

- dt
da dQq; s(n) da IPr sy da
N-1 _ _
_da["S [ (= ysrrn-s A sy s, AV o) TPy
=da i ( d(t_a)s(nJrl)*s(n) EP d(t_b)s(nﬂ’l)*s(n) Ja
A e S A ) at (29
Iy sy da IPr smy da ’
where the last step used integration by parts, (E@). Next define the variations
aqr,s(n)
5qr,s(n):Tda’ (30
and
apr,s(n)
5pr's(n):(?—ada' (31)
Then we have
N—1 _ _
b s(n+1) s(n)p ds(n+1) s(n)q JH J
0= —1)sn+D=s(m LA 50 m + L 5Dy s — ——— 80 ()~ ——— )dt
anzo ( ) d(t_a)s(n+1) s(n) qf,s(n) d(t_b)s(n+1) s(n) pr,s(n) ‘9Qr,s(n) Qr,s(n) &pr,s(n) pr,s(n)

N—-1 _ _
b ds(n+l) s(n) JH ds(n+1) s(n) JH
= E (_ 1)s(n+1)7s(n) s(n+3r—yss((rr]1)) - 5Qr s(n)+ s(n+g)r—'z((rr]1)) - 5pr s(n) dt. (32)
an=0 d(t_a) aqhs(n) ' d(t_b) &pr,s(n) '

Since the variationgq, s, andap, ¢ are independent, we N N’
obtain Hamilton’s canonical equations: Hzngl Ay s(n).oPrs(n—1) b+ nzl s (m),aPrs'(n-1),a—L-
s(n+1)—s(n) (39
IH =(_1)s(n+l)fs(n) d p
5qr s(n) d(t_a)s(nJrl)fs(n) r,s(n) s ) . ) - .
' For this Hamiltonian, we have the additional equations
oH
apy s(n) =0r,s(n+1)» (33) L:(_l)*[s/(nu)fs’(n)]
' ‘9qr,s’(n),a
oH JL ds’(n+1)fs’(n)
gt at X dt—p)F D s m Premar (39
If the Lagrangian is a function of coordinates defined by P
both Egs.(18) and(19), then we must define additional mo- —q
r,s’(n+1),a-
menta apr,s’(n),a
N'—n-1 These results are the same as were derived using the Euler-
Prema= 2 (—1) [kenth=sne1)] Lagrange equation in Ref3]. The present method of deri-
k=0 vation is needed as a basis for the canonical transformations
s (ktnt1)-s'(n+1) oL in Sec. V. o _
% : : ( ) For integer-order derivatives, it can be sho(®ef. [20],
d(t—b)® (k+n+1)—s'(n+1) Iy " (k+n+1),a p. 220 that

(34)
dH oH 4L

wheren=0, ... N’'—1. The Hamiltonian is then dt ot ot (37)
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Hence if the Lagrangian is not an explicit function of time transformations can be obtained using generating functions
and all derivatives are of integer order, then the Hamiltonianyith different Variablegj{_s(i) and Qg , defined by
is a constant of the motion. However, if there are noninteger- L
order derivatives in the Lagrangian, it was shown in RR&f. dag dQsi)
that Eq.(37) does not hold and therefore a Hamiltonian with gt Usi+ns Tgp ~ Qsi+n- (43
fractional derivatives is not generally a constant of the mo-

tion and the system is nonconservative. For integer-order derivatives, these new coordinates are the
same as the usual canonical coordinates. However, when
V. CANONICAL TRANSFORMATIONS dealing with fractional derivatives, the coordinatgg, and

Transformations are called canonical if they preserve th%s(i) will not be canonical, so all canonical expressions must
form of Hamilton’s canonical equations. They transform theP€ Written in terms of the original coordinateg;) and
coordinatesqg;, and momentapy;, into new variables sq)- The four kinds of generating functions are then
Qs)(a,p,t) and P;(q,p,t) and provide a new function F1(d,Q.t), F2(a,P.t), F3(p,Q.t), andF4(p,P.t). For our
K(Q,P,t) that plays the part of the Hamiltonian. For sim- present purposes, there is no need to deal itlor F,. We
plicity, subscripts will usually be omitted when showing Will refer to transformations using the original canonical co-
functional dependence & and the subscript will be omit- ordinates as “direct” transformations, to_distinguish them
ted for coordinates and momenta. The derivations will befrom the transformations using t@i) and Qgjy - We will
extensions of the method used by Goldsi&ef.[20], Chap. first derive the canonical transformations for andF, and

8) for conventional mechanics. then state the results for the less useful direct canonical trans-
To be canonical, new coordinates must satisfy a modifiedormations.
Hamilton’s principle of the form

A. Canonical transformations of the first kind

N—1
5L ( ;0 PS“)QS“*D_K(Q’P't))dtzo- (39 For a generating functiofi;(q,Q,t) that is a function of
q_s(i) and Qg , the transformation is
At the same time, the original coordinates satisfy the similar N—1

principle

N-1
i=20 Ps(i)ds(i+1)—H _( Zf) Psi)Qsi+1—K

o N-1
5[ ( i—ZO ps(i)qs(i+l)_H(qvpit))dtzo- (39

d—_ —
a = aFl(qult)
For these equations to hold, the integrands must differ by the N-1

— N = — _
total time derivative of an arbitrary functidf: - oF1 dqs(i)+ o1 dQS(i)Jra_Fl

- <o ﬂq—s(i) dt =0 Qg dt ot
2, PsiQsi+1~K(Q.P.) &Ry R, F,
b S(i)NS(i+1) 1y _ &Fl q . n 2 &?FlQ . +ﬂ
“ 3_s(i) s(i+1) = 0')Qs<i) S(i+1) gt
N—1
dF 44
—( 20 ps(i)qs(iﬁ—l)_H(q’p't)) T (40 (44
Since the variableg and Q are considered to be indepen-
This relation follows from dent, the equation can hold identically only if the coefficients
of gy +1) andQg + 1) are each equal to zero. Hence we have
bdF the transformation equations
—dt=F(b)—F(a). (41
_0F,
SinceF is not varied at the end points, we automatically get p5<‘>_aq—s(i)’
5fbdth S[F(b)—F(a)]=0 (42) IF,
—adit= —F(a)|=0. 1
dt Psiy=——, 45
a S(i) &QS(i) ( )
The functionF, which completely determines the transfor- —
mation, is called the generating function. Foto produce a dF,

transformation from one variable to another, it must be a K=H+ ot

function of both the old and new variables. We thus have
four traditional forms for F: F(q,Q.t), F»(q,P,t),
FS(p!Qlt)! andF4(p!P1t)' . . . .

For mechanics with fractional derivatives, these generat- Following the traditional method for integer-order deriva-
ing functions will be seen to lead to awkward expressiondives, we can define the generating functios(q,P,t) as the
involving fractional time derivatives. However, satisfactory Legendre transformation

B. Canonical transformations of the second kind



55 MECHANICS WITH FRACTIONAL DERIVATIVES

N—1
Fo(4,P.0=F1(A.Q0+ 2 PsiQsi-  (46)
Solve this forF_l and substitute into Eq44) to get
N—-1 N—-1
igo ps(i)Qs(H—l)_H): ;O PS(i)QS(H—l)_K)
BT Fz_zb Psi)Qsii)
N-1
_ dPe:
_ - _ 2TShA
=Kt gFam 2 g Qs
N—-1 N
JF,
:—K+E —Qs(i+1)
=0 d(gi)
+N‘1 oF, dPgi, dF,
i=0 &PS(I) dt ot
N—-1
dPg; —
_ Sy
“4 dt QS(I) (47)

Equating the coefficients afg; 1) and dPg;)/dt gives us
the transformation equations

9F,
Psiy=—:
(i
— R,
QS(i):—Z ; (48)
K—H+(7F_2
U gt

C. Direct canonical transformations

The most direct derivation of the canonical transforma-

tions does not use the auxiliary coordina@g) and Qg -

However, if only the canonical coordinates are used, certain
terms can only be made to cancel by keeping all terms under (—1)[Si+D=s)]

the variational integral, as with Eg&8) and(39), and using
integration by parts. As seen from E{.7), integration by

parts introduces fractional time derivatives that complicatqf

3587
and the direct canonical transformation of the second kind is

gIsi+1)-s(i]-1 oF,
d(t— )T SIT-1 Qs = g -

1-[s(i+1)—s(i)]
Dy =(— 1) Isi+1=s()] d _ P
s(i) d(t_a)lf[s(wrl)fs(l)] aqs(i)'
(50)
K=m+ 22
Bl at

In this paper these direct transformations will only be used
for purposes of comparison.

VI. HAMILTON-JACOBI THEORY

As in conventional mechanics, the Hamilton-Jacobi equa-
tion results from a canonical transformation for which the
new variables are constant in time. For integer-order deriva-
tives, such a transformation will follow automatically if the
new HamiltonianK is identically zero, since from the equa-
tions of motion we then have

dK
Qi =P, =0,
(51)
JK
IR

For fractional derivatives satisfyin§(i +1)—S(i)<1, we
can derive a similar relationship from

RS Ko
d(t—p)r s Qs = 5 =0,

(52
q[Si+1)-S0)] . K
d(t—a) S-S0 s = 5o =

we differentiate each side b

the transformation equations. These time derivatives caus(e_ 1)1—[S(i+1)—(s(i)][d1—[s(i+1)—S(i)]/d(t_a)l—[S(H—l)—S(i)]]y
difficulties with the Hamilton-Jacobi and wave equations.ordlf[S(Hl)fS(i)]/d(t_b)lf[sml)fsu)] to get

Since derivations of the direct transformations follow the

same pattern as used in Secs. V A and V B, the derivations

will not be shown. The direct canonical transformation of the gl-[sirn=si]

first kind is Qsi)=grr=a)r-srrn=sm®=0
_ gisti+b—11, . JF
(_1)[S(|+1)_1]d[S“*l)*ll(PS(;):(7q L - st 1 [S(+1)=S(0)]
— : _ —[S(i+1)—S(i =
s Pgiy= (=1t S H7s d(t—ayr sro-sn0=0;
[Si+D-1lp_.
(—1)I8i+D=1] d Psi) dFq (49) (53

dSTFD-T({— q) :3qu)’
If necessary, intermediate coordinates may have to be de-
IFy fined to ensure tha(i +1)—S(i)<1.

K=H+ ot SinceK is related toH by
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N—-1 — N—-1

IF ds S dagy JS dPgiy dS
ot dt =0 gqy dt =0 IPssy dt 4t

it follows thatK will be zero if F, satisfies :N*1 IS dag, s

(9|:—2 =0 5_50) dt ot

H(q,p,t)+ —-=0. (55) _
at NP IS S
= —Osi+) T 2 (61)
It will be convenient to expresp in terms of the trans- =0 dqsi)

formation equation . N -
d since the momenta are constant in time. By substituting from

the Hamilton-Jacobi equation, we get

_
ps(i>—(9q_—_, (56) gs V! os
s(i) at ;O 0 Osi+1)—H (62)
in which case we obtain the Hamilton-Jacobi equation s
. L and from
JIF JIF _
H(qsm,?z,t)+—2=o. (57) 38 s @iy 1)
ﬂqs(i) at ps(i):Tm (63)
S(1
The solution 6 in this case of the Hamilton-Jacobi equa- \ye find
tion is usually denoted b$ and called Hamilton’s principal
function. o ' - ds Nt
Note thatS(q,P,t) is a function ofq rather than the ca- i Z Psi)dsi+1)—H=L, (64)
nonical coordinatey. If we wish to find a direct Hamilton- =0
Jacobi equation in terms af, a similar derivation using a
generating functionF,(q,P,t) from Sec. V C yields the
more complicated equation S f g 65
= | Ldt+ const. 5

di-[Si+1)-si]
d(t_a)l—[5(i+l)—5(i)]

H(qsm (— 1SS
VII. APPLICATION TO LINEAR FRICTION

The formalism of the preceding sections can be illustrated
with the example of a frictional force proportional to veloc-
ity. For simplicity, we will choose a Lagrangian that is a
We will not make use of this form of the equation, except forfunction of coordinates defined by E3.8). We will consider
brief references in Secs. VIlI and VIII. the I|m|t|ng case in whicla— b while keepinga< b, so that
all fractional derivatives can be approximated by derivatives
pf the form d'/d(t—b)".

The three terms in the Lagrangian

dF 5(q,P,t 9F 5(q,P,t
, IFa(a ),t)+ 2(q,P.1) _

0. 58
é’qs(i) ot ( )

We know that sincePS(i)=0, the momenta must be con-
stant. Hence the solution of the Hamilton-Jacobi equatio
can be written a$(dy) , @iy ,t), where eachrg) is a con-

stant. We then have 2 1/2 2
L= & Vv +'l d7x
— 2™ at 15 Gr=p)™
0 _ 98(Ag(iy » i) > 1) (59
e FIREE
el —Em'xz—V(x)ﬂ1 X2 (66)
- 2 2 Y (1/2,b)

The other transformation equation provides the new constant

coordinates represent kinetic energy, potential energy, and linear friction
energy. The methods of Secs. IlI-VI can be applied by
60) choosingN=2, s(0)=0, s(1)=3, ands(2)=1. The La-
das grangian can be written as a function of the generalized co-
ordinates:

— &S(q_),af ),t)
Bsiy=Qsiiy =— o —

This equation can be solved for ey .B<i).t) to get the

final sglution to the problem. sy B 1) 10 9 L=3mai—V(do) +i3y03,- (67)
An interesting result of conventional classical mechanics o

is that the solutiorS to the Hamilton-Jacobi equation equals, The Euler-Lagrange equation is

to within an additive constant, the integrflLdt. We now L qi2 L d dL

show that the same holds true for the case of fractional de- i =

im0, (69
rivatives. The time derivative o can be written aqo  d(t—b)¥aqy, dtdg,
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which becomes The wave equation is just the conventional Sclimger
equation, but with two extra terms involving fractional de-
. . IV(X) rivatives.
MX==yX=—~ - (69) The methods of Sec. VI also provide a direct Hamilton-
Jacobi equation in terms of the canonical variables. From Eq.
The momenta are (58) we find
1/2 2 1/2
= JL i d1/2 oL - i ‘ 12 7S ) (_ l)l/2q1/2 ‘ 12 (9_8
Po= Erp +1 at—0)72\ 70, 2m\d(t—a)*4 gy, d(t—a)*? aqq
. . 1, S
=1YX(1200) T IMX321) 5 (70 +V(qo) —i 5 Y= T (76)
B i o As discussed earlier, this form of the equation is unsatisfac-
P12~ aqy) mx tory for most purposes, due to the fractional time derivatives.
This simple example illustrates the basic techniques for
The Hamiltonian is applying fractional-derivative mechanics to linear friction,
but it does not deal with more realistic scenarios that might
H=q12P0+q1Pp12— L include driving noise or more general frictional forces.
pl, - ) D VIIl. WAVE EQUATION
—+ +V 71
~=om T dw2Po (do 2 7%/2 A. Wrong way
and Hamilton's equations are Our. next goal is _to fi_nd a quantum wave Qqua}tion corre-
sponding to a Hamiltonian with fractional derivatives. As a
9H dv2 9H first guess, we might try the usual substitution,
= i L — = 1
990 m&po 9Po Q12 .
(72 Prn— —ih 9 (77
9H 12 JH b
I d(t—p)2Pvz 5o =i to obtain the wave equation
The first of Hamilton’s equations yields the Euler-Lagrange H g o —ih lﬂ:iﬁa—lﬁ (78)
equation, the one to its right is an identity, and the remaining nne I n at’
two equations are equivalent to the definition of the mo-
menta. With a simple example, we can easily show that this rule
If we define coordinates may lead to the wrong result. Consider the Hamiltonian
= L 1 H= P? vV 2 79
QOZQ(—llz)I—lf (t=t")"Y2q(t’) dt’, = om QP (Q)_'_yQ (79)
I'(3)Jb
_ (73 Given this Hamiltonian, it is reasonable to think that it obeys
Q1/2= Yo, Hamilton’s equations
then the Hamilton-Jacobi equation can be obtained from Eq. oH .  oH . dH . JoH .
(57). Written in terms of the canonical coordinates, the o Bp-Q - P o P, (80

Hamilton-Jacobi equation is

S which lead to the equation of motion
17

S
ﬁa_qo

oS .
(11/2(9q B +V(Qo) 1S Y12= 7 i N
(74) ﬁq = mq_ ivQ. (82)

The rule for finding the corresponding quantum-mechanicalf the Hamiltonian is quantized using E€(7), it is easy to
wave equation will be shown in Sec. VIl to be the same assee that the wave equation corresponds to this equation of

in conventional mechanics. This rule yields motion.
Unfortunately, Eq(79) is only a different notation for the
, 1 P d 1, fractional-derivative Hamiltonian given by E§71), which
T ag—lﬁ%/zﬁq(im) +V(Qo) ~1 5 vl ¥ corresponds to a different equation of motion,
Y v
—|ﬁ— (75 —=-mg- 9. (82

Jq
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In order to obtain Eq(82) from Eg. (79), we must use a 1 52 J 1

different set of Hamilton’s equations, given by E@2). We —ﬁzﬁ o2 " 1Xan o —— X, +V(X) 5 > VX | ¥
see that a Hamiltonian can correspond to more than one set —1z

of Hamilton’s equations. However, the conventional quanti- oY

zation procedure for the Hamiltonian leads to only a single —'ﬁﬁ (88)

wave equation, the one corresponding to the conventional

Hamilton’s equations. We must seek out a different path tqye need to show that this wave equation reduces to the
quantization. Hamilton-Jacobi equation in the classical limit. This task can
be accomplished by writing the wave function as
B. Right way

A standard method of showing the correspondence be- PX X1z X(—v2) ) = AX Xz X112 1)
tween quantum and classical mechanics is to start with the i
Schralinger wave equation and derive the classical Xexp S(x X(1/2) X172 1) | -

Hamilton-Jacobi equation as an approximati@b]. The

procedure is straightforward and can be illustrated for the (89

case of one dimension with coordinate Begin with the

Schradinger equation, The differentiations can be performed easily since there are
no fractional derivatives of the wave function in E§8),

, 1 1 & oY only integer-order derivatives with respect to fractional co-
—h 2m ax2 2 TV |y _'hﬁ 83 ordinates. The fractional wave equation becomes

and write the wave function as n? A dA dS  ih dA JS

Tomax® PR gy T AR Gy T T ax ax
(=112 (=112
T 0_Xz 2mA( +AV(x)— Ayx(l,z)

where the amplitude and phase are determined by the real

functions A(x,t) and S(x,t). The wave equation then be- A 9S

comes =iﬁE_AE’ (90)

which reduces to the Hamilton Jacobi equation

2 ?A i oASS ik S 1 (as)z

S _+_ —_
2m ax2  m ax dx  2m’ ax%  2m’ | dx

JA oS S S\ 2 1,
+AV(X) | = ih—=—A }l,//. (85) 5t T omlax] TXu2 g ) %, +V(X) |5 VX
h? °A

If we separate this expression into real and imaginary parts, (91

= — _2’
we get two equations: 2mA dx

S 1 /S 22 2A provided we satisfy the continuity equation
1 om ( ) +V(x)=

2m (86)

" 2mA ax% aA+ AA LA IA 3S 1Aazs o (92
Mot M2 50— 7 ox x Tahee =0 (2
and (12

&A IA (78 1 (928 This _procedure demonstratgs th_e cons_ist_ency between the
_ (87) classical and quantum equations in the limitiagpproaches
T T ax ox 27 e 0, which is the desired result. It is not a derivation of the

classical equations from the quantum, since the two classical

Equation(86) is the classical Hamilton-Jacobi equation, with equations are not necessarily the real and imaginary parts of

an extra term that is a sort of quantum potential. The termhe wave equation.

becomes zero fofi=0, leading to the well-known(and The success of the above procedure suggests the follow-

sometimes misleadingbservation that quantum mechanics ing rule: The Hamilton-Jacobi equation

reduces to classical mechanics in the limitiaapproaches 0.

In this sense, the Hamilton-Jacobi equation is the short- IS JS
wavelength limit of the Schidinger equatior{Ref.[20], pp. H| Qsiy, —t| + Ezo (93
307-314. Equation(87) is the classical continuity equation 90s(i)

with densityp=A? and current density= (A%/m) S/ dx.

The same procedure can be used to determine the appréQ'responds to the quantum wave equation
priate wave equation corresponding to a fractional-derivative
classical system described by E4). In analogy to Eq. H(q g _‘9 ) l/l:iﬁa_‘/’ (94)
(83), we start by choosing the wave equation s(i) s (i)’ at’
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This wave equation differs from the incorrect one discussedavhich he believed might not be derivable from any Lagrang-
in Sec. VIII A because differentiation is with respect to theian. In an attempt to solve the problem, Bateman introduced
coordinatesqg;y, rather than the canonical coordinatesthe two tricks described in Sec. | of the present work: the
Us(i) - _method of dual equations a_nd the tlme-d_epend_ent Lagrang-
It may be possible to find a quantum wave equation corian. Bateman attempted to flnd_a Lagrangian using hl_s meth-
responding to the more complicated form of the Hamilton-0ds, but concluded that a solution did not seem possible. To
Jacobi equation, Eq58), which includes fractional time de- MY knowledge, this puzzle has remained unsolved since its

rivatives. However, only integer-order derivatives obey aPublication by Bateman in 1931. However, with fractional

simple product rule, so there is no simple connection bemechamcs{usmg the conventions of Sec. VIit is trivial to

tween such a wave equation and the Hamilton-Jacobi equ:g—nd a solution:
tion, as there was for Eq90). Moreover, the fractional time
derivatives would result in an unsatisfactory wave equation,
since there are difficulties defining a positive-definite prob-
ability density when time derivatives are not of first order.
Even the Klein-Gordon equation allows negative probability By using fractional derivatives, it is possible to construct
densities because of its second-order time derivatBas. a complete mechanical description of nonconservative sys-

For these reasons, we consider m) to be the appropriate tems, inC|uding La.g.rangian and Hamiltor.lian mechaniCS, ca-
wave equation. nonical transformations, Hamilton-Jacobi theory, and quan-

tum wave mechanics. The example in Sec. VIl shows that
the formalism can be applied to a classical frictional force
proportional to velocity. There is no assurance that all non-
Bateman[13] tells the story of an interesting problem conservative systems can be treated by these techniques.
which, at the time, appeared impossible to solve. Accordinglowever, by using fractional derivatives of various orders, it
to Bateman’s account, R. C. Tolman posed the question df possible to choose Lagrangians that result in a wide range

whether there were equations that could not be obtained fror@f dissipative Euler-Lagrange equations. These Lagrangians
a Lagrangian. E. T. Whittaker responded with can describe nonconservative forces involving fractional de-

rivatives, rather than the functions more commonly used to

L:X2+y2+X2+Xy_ iX(1/2>y(1/2> . (96)

X. CONCLUSION

IX. PUZZLE

X—x=0, describe dissipation. Hence we are presented with new pos-
. (95 sibilities for dissipative equations, and also new challenges
y—x=0, posed by the complexity of the mathematical methods.
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